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Abstract The application of evaluation of implicit solvent
methods for the simulation of biomolecules is described. De-
tailed comparisons with explicit solvent are described for
the modeling of peptide and proteins in continuum aqueous
solvent. In addition, we are presenting new data on the simu-
lation of DNA with implicit solvent and describe the develop-
ment of a heterogeneous dielectric model for the simulation
of integral membranes. The performance of implicit solvent
simulations based on the GBMV generalized Born method is
compared with explicit solvent simulations, and implications
for the simulation of very large biomolecular complexes is
discussed. We are anticipating that the work described herein
will lead to new, efficient modeling tools that will allow the
simulation of longer timescales and larger system sizes in or-
der to meet current and future challenges by the experimental
community.

Keywords Implicit solvent · Generalized born · Poisson
equation · Molecular dynamics

1 Introduction

Classical simulations of biological macromolecules have
moved from mere exercises in statistical mechanics to real-
istic descriptions of molecular dynamics in atomic detail,
over the last decades. The progress in this field is a result
of methodological advances, such as the efficient treatment
of long-range electrostatics [1–4], new enhanced sampling
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methods [5–9], continuing improvements in force fields [10–
19] and advances in incorporating quantum mechanics into
simulations [20–22], and also follows an ever increasing
speed of computers. It has become possible not only to study
folding of peptides and very small proteins in atomic detail
[23–32] but also study fundamental mechanisms in large bio-
molecules such as DNA polymerase [33–35] and the ribo-
some [36,37]. Nevertheless, the dynamics of many biological
processes remain largely inaccessible to atomic-level sim-
ulations when relevant timescales reach microseconds and
system sizes exceed more than a few hundred residues. It
is especially challenging to study the dynamics of protein–
protein and protein–nucleic acid interactions in large com-
plexes at the core of fundamental biological functions where
much of the current experimental research is focused today.
Two of the most impressive recent successes in experimental
structure determination have resulted in atomic-level struc-
tures of the ribosome [38,39] and eukaryotic RNA polymer-
ase II [40–43]. Both structures offer intriguing insight into
gene transcription and translation, but the static structures
have posed as many questions as they provide answers about
the detailed, inherently dynamic mechanisms. With tremen-
dous effort it has been possible to generate a 10 ns trajectory
of the complete ribosome [36] in a first attempt to study its
dynamics in atomic detail. However, while such simulations
are very impressive, their length remains far from the milli-
second timescale of ribosomal function. The great challenge
in the years to come will be how to efficiently and accurately
study long-time dynamics in large biomolecular complexes
for which structures are already available and will likely be-
come available from experiment in the near future.

While rapid increases in computer speed have driven
much of the past progress in biomolecular simulations, it
appears that the gains in computer speed have begun to slow
down recently [44] emphasizing the need for further method-
ological advances. The computational cost of biomolecular
simulations is limited by the finite integration step size at
which a simulation progresses, by the level of model detail
(i.e. the number of particles or interaction sites) that deter-
mines the cost to calculate energies and forces for a single
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conformation, and by the time it takes to cross kinetic barriers
compared to the biological system. The integration time step
is limited fundamentally by the smoothness of the underlying
energy landscape; in particular it needs to be short enough
to sample the highest frequency components, typically from
bond or angle vibrations. As a result, a time step of 1–2 fs is
required for atomic-level simulations. While some attempts
have been successful to extend the time step to 3–4 fs un-
der certain assumptions [45–47], substantially longer time
steps are unlikely to be practical if an atomic level of detail
is maintained.

Another avenue is the acceleration of dynamics through
enhanced sampling methods which facilitate the crossing of
kinetic barriers. Many such methods have been proposed
and successfully applied to challenging problems like pro-
tein folding [27,48–56]. Most enhanced sampling methods
preserve the relative energies of conformational minima, but
the extraction of accurate kinetic rates is often not straightfor-
ward. In principle, enhanced sampling methods can accelerate
dynamics by many orders of magnitude if the dominant ki-
netic barriers are targeted specifically, e.g. through umbrella
sampling [57–60]. However, this requires a priori knowledge
of the transitional pathway(s) and barriers. On the other hand,
non-specific enhanced sampling methods may facilitate the
crossing of all barriers, for example through the use of ele-
vated temperatures in replica exchange simulations [6,50–
52,54–56,61] or with multicanonical sampling [6,62]. The
result is substantial sampling of less relevant regions of con-
formational space, which limits the effectiveness in speeding
up the most relevant kinetic processes. Nevertheless, even
such non-specific enhanced sampling methods can acceler-
ate molecular dynamics by up to several orders of magnitudes
[7,63,64] providing access to microsecond timescales with
nanosecond timescale simulations. As it appears that fun-
damental limits have not been reached, future methods are
expected to enhance sampling of biological processes even
further.

The third option for reaching longer timescales and larger
system sizes in biomolecular simulations is the reduction of
the level of model detail. An extreme example of this strategy
is the use of lattice-based H-P models during early studies
of protein folding [65–71]. A variety of more sophisticated
low-resolution representations of both proteins and nucleic
acids have been proposed over time [72–80]. While such
models often lack the level of accuracy needed to under-
stand specific biological processes in detail, it is possible to
recover atomic-level detail through multi-scale modeling ap-
proaches [81–85]. One can imagine, for example, the use
of low-resolution models for the propagation of conforma-
tions over kinetic barriers, while reconstructed atomic-level
models are used to obtain a more accurate energetic descrip-
tion [85]. However, much of the current efforts in reducing
the complexity of biomolecular simulations are focused on a
reduced representation of the environment. A commonly em-
ployed explicit representation of the environment increases
the computational cost substantially over the simulation cost
of the biomolecule itself. Typical explicit solvent simulations

usually contain more solvent atoms than solute atoms so that
most of the cost is actually spent on calculating solvent-solvent
interactions rather than solute-solvent or solute-solute inter-
actions. Therefore, numerous attempts have been made to
develop implicit descriptions of the environment that do not
require an explicit representation while maintaining a com-
parable level of realism [86,87].

Implicit descriptions of the environment can be distin-
guished into knowledge-based and physically motivated ap-
proaches. Knowledge-based approaches take advantage of
the vast amount of information about the structure of pro-
teins and nucleic acids that has become available [88–90].
A typical example are implicit solvation models based on
atomic solvation potentials [91–96] that have been used for a
long time for water-soluble proteins and more recently also
for membrane-bound proteins [97]. Such empirical models
provide a good description based on statistical averages and
are particularly well suited in scoring functions [89,98–100].

Physically motivated implicit solvent models generally
begin by decomposing the solvation free energy into electro-
static and non-polar contributions [101]. In an implicit model,
the electrostatic component of the solvation free energy, or
the free energy of charging a given biomolecule from zero
charge to full charge in the presence of the solvent environ-
ment, can be estimated with a continuum dielectric model
of the solvent [86,87,102–104]. Such models have been very
successful in including the effect of solvent in models of pro-
teins and nucleic acids [105–108]. The non-polar contribu-
tion to the solvation free energy contains two components: (1)
the entropic cost of creating a cavity for accommodating the
biomolecule in the solvent and (2) the biomolecule–solvent
van der Waals interactions. Both components are often com-
bined into a simple term that is proportional to the solvent-
accessible surface area of the biomolecule [101]. However,
some studies suggest that only the cost of cavity forma-
tion is reasonably well represented by such an approach,
while a different formalism appears to be more appropri-
ate in accounting for the van der Waals interactions with the
solvent [109–112].

Implicit solvent models have been successful in many
applications, in particular as a component of conformational
scoring functions [100,113–118], for estimating ligand–
protein and protein–protein binding free energies (P. Ferr-
ara et al. 2004, submitted) [119–124], but also to enable
long-time molecular dynamics simulations of peptides and
small proteins [24,53,110,126–129]. However, despite such
successes, the degree to which implicit solvent models can
approximate explicit solvent and, ultimately, reality is not
yet fully established [130,131]. Furthermore, it remains chal-
lenging to take full advantage of such methods in the mod-
eling of large complexes and biological systems in complex
biological environments. In the following we will describe re-
cent progress and ongoing efforts in this respect. In particular
we will compare recently developed implicit solvent meth-
ods with explicit solvent methods in terms of accuracy and
efficiency and we will describe new methods for the implicit
modeling of membrane systems.
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2 Continuum dielectric implicit solvent methodology

Figure 1 illustrates the basic continuum solvent approxima-
tion for biomolecules in aqueous solvent, where the partial
charges of a given biomolecule are embedded in a low-dielec-
tric cavity and surrounded by a high-dielectric environment
representative of the solvent. This kind of model, which ap-
plies macroscopic concepts on a microscopic level, is de-
scribed rigorously by the Poisson equation (or the Poisson–
Boltzmann equation if ionic concentrations in the solvent are
included):

∇[ε(r)∇φ(r)] = −4πρ(r) (1)

The Poisson equation can be solved to yield the electrostatic
potential φ(r) as a function of the biomolecular charge den-
sity ρ(r) and the dielectric function ε(r). The electrostatic
solvation energy is then readily calculated from the electro-
static potential [103]. While direct solutions of the Poisson
equation tend to be costly, more efficient approximations of
continuum dielectric descriptions have been proposed [86].
Of these methods, the generalized Born (GB) formalism has
become the most popular as it can approximate solutions
from Poisson theory accurately and efficiently [132–134].
Furthermore, the GB method provides an analytical expres-
sion for the calculation of the electrostatic solvation energy
that is advantageous for application in molecular dynamics
simulations.

Generalized Born formalisms represent the same dielec-
tric continuum model as Poisson or Poisson-Boltzmann the-
ory. As an extension to the fundamental Born expression for
the solvation energy of a single ion in a dielectric medium
[135], the solvent-induced reaction field energy of a set of
(partial) charges is described with the following empirical
expression in GB theory [134,136]:
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Fig. 1 Schematic illustration of a biomolecule embedded in a dielectric
continuum

where εp, εw are the interior and exterior dielectric constants,
ri j is the distance between atoms i and j , αi is the so-called
GB radius of atom i . The factor F may range from 2 to 10,
with 4 being the most commonly used value [134]. While the
Born radius of a single, spherical ion corresponds to its size,
GB radii reflect the distance of a charge location from the
solvent boundary in a given molecule. It has been shown that
Eq. (2) is a very good approximation to the electrostatic sol-
vation energy from Poisson theory as long as “perfect” GB
radii are used [137]. Perfect (according to Poisson theory)
Born radii are obtained from Eq. (3):
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where the solvation energy Gi
pol is obtained from Poisson

theory for the given two-dielectric system with a unit charge
at the location of the atom i while all the other charges are set
to zero. Thus, the key for a successful application of the GB
formalism lies in an efficient and accurate calculation of the
GB radii, αi. Following the so-called Coulomb field approxi-
mation, it is possible to obtain the GB radius of a given atom
from the following expression [133]:
1
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where Ri is usually the atomic van der Waals radius of atom
i and the volume integral is carried out over the entire sol-
ute cavity. The integral can be approximated further by dis-
crete sums of overlapping spheres [138,139] or Gaussians
[140]. However, some methods carry out the integration di-
rectly [141,142] or replace the volume integral with a surface
integral [143] in order to evaluate Born radii according to
Eq. (4) more accurately. The Coulomb field approximation
is exact for a charge at the center of a spherical cavity, but
becomes inaccurate for off-center charges. For small mole-
cules, where charge sites are relatively close to the center,
the errors remain small; however, significant deviations are
found in larger molecules [141,144,145]. Corrections to the
Coulomb field approximation have been introduced recently
[145,146] with the result of substantially more accurate elec-
trostatic solvation energies for larger molecules. The Cou-
lomb field approximation correction terms have also opened
an avenue to extend the GB formalism to the accurate im-
plicit treatment of low-dielectric environments. According
to Kirkwood [147], the reaction field energy for a single off-
center charge q at a distance r from the center of a spherical
cavity with radius R is given as:
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where εw and εp are the external and internal dielectric con-
stants, respectively. The Coulomb field approximation cor-
responds to the zeroth-order term, in which case the Born
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radii [calculated from Eq. (3)] do not depend on r or the
external dielectric constant. Corrections to the Coulomb field
approximation effectively approximate the higher order terms
in the Kirkwood expression and introduce a dependence on
εw and εp [144]. This has led to the following formulation for
the calculation of GB radii in arbitrary two-dielectric envi-
ronments:

αi = 1

C0 A4 + C1

(
3εw

3εw+2εp

)
A7

+ D + E

εw + 1
(6)

In this expression, A4 is calculated as 1/αi according to the
Coulomb field approximation [Eq. (4)], A7 is a higher-order
correction described elsewhere [146], and C0, C1, D, and
E are constants that are fitted to reproduce solutions from
Poisson theory.

A critical issue of continuum dielectric models is the ex-
act definition of the dielectric boundary. The canonical ap-
proach is to construct the so-called molecular surface [148].
This surface is defined by rolling a sphere with the approx-
imate size of a water molecule around the molecular object
constructed from van der Waals spheres for all atomic sites.
This definition leads to the exclusion of small cavities that are
essentially inaccessible to water molecules and is presumed
to result in the surface that best describes true solvent acces-
sibility. Such a surface definition is commonly used when
electrostatic energies of biomolecules are calculated from
Poisson theory [103,149]. Existing methods for the exact cal-
culation of the molecular surface [150] have been too expen-
sive, however, to be effective in GB methods. Therefore, most
GB methods represent the dielectric boundary as an overlap
of atomic van der Waals spheres that may be smoothed or
replaced by Gaussians in order to approximate the molecu-
lar surface [140,142,151]. As a consequence, the agreement
of such GB methods with Poisson theory, where the exact
molecular surface is used to define the dielectric boundary, is
limited because different dielectric functions are compared
[132]. Better agreement has become possible, however, with
new formulations that approximate the additional solvent-
excluded volume created by the molecular surface rather than
the actual surface. One such method is the GBMV formal-
ism [146], which also carries out the integral in Eq. (4) di-
rectly and includes a correction to the Coulomb field approx-
imation. As a result, highly accurate Born radii are obtained
with the GBMV method when compared to the correspond-
ing radii calculated from Poisson theory according to Eq. (3)
while total electrostatic solvation energies agree very well
with relative errors of ≤1% between GBMV and Poisson
theory [132,146].

3 Implicit versus explicit solvent

A connection between implicit and explicit solvent is possible
in multiple ways. The most direct quantitative comparison
between explicit and implicit solvent is the calculation of sol-
vation free energies. Especially attractive is the calculation

of charging free energies for a fixed conformation that cor-
responds directly to the electrostatic solvation energy based
on a continuum dielectric model. Such a comparison can
be used to adjust the dielectric boundary, e.g. by modifying
the atomic radii that are used to define the molecular surface.
This strategy has been followed for proteins and nucleic acids
based on explicit charging free energies for amino acid di-
peptides and single nucleotides [152–155]. A modification
of the atomic radii from the default van der Waals radii, or
more precisely the σ values from the force field Lennard–
Jones potential, can be justified by comparing the molecu-
lar surface with the surface of the solvent-excluded volume
from explicit solvent simulations. The example in Fig. 2a
shows the default molecular surface and explicit solvent-
excluded volume around a β-hairpin structure. Many areas
are clearly visible where the molecular surface either over-
or underestimates the solvent-accessible surface. The surface
can be brought into much better agreement when the atomic
radii are adjusted appropriately (Fig. 2b). In addition, Table 1
shows that the agreement with explicit solvent charging free
energies of amino acid dipeptides also improves consistently
as a result of the adjusted dielectric boundary. It should be
stressed that the actual Lennard–Jones parameters remain un-
affected. Only the radii that define the dielectric boundary are
changed in order to reflect that the effective point of closest
contact between the solvent and atoms on the molecular sur-
face is not at the minimum of the Lennard–Jones potential
but substantially closer or further as a result of electrostatic
interactions.

Comparisons of conformational energy landscapes be-
tween explicit and implicit solvent descriptions are most rel-
evant for actual applications of implicit solvent methods.
Molecular dynamics simulations with implicit solvent that
are easily performed with GB methods [110,126,127,156–
158] and to a more limited extent also with Poisson-based
methods [129,159–162] can serve as a means to carry out
such tests. Figure 3 shows the results of implicit solvent sim-
ulations with a recent GB method for the three proteins,
protein G, ubiquitin, and cyclophilin A. These three pro-
teins were selected as good test cases where structures from
crystallography and NMR are available and in close agree-
ment. The average Cα root mean square deviations over the
last 5 ns are 0.77 Å (protein G), 1.74 Å (cyclophilin A), and
1.59 Å (ubiquitin) with respect to the experimental structures
3GB1, 1OCA, and 1D3Z. For comparison, typical deviations
of 1–3 Å are found in explicit solvent simulations [162]. As
another example, we have carried out implicit solvent sim-
ulations of the DNA dodecamer d(CGCGAATTCGCG)2.
Figure 4 shows that the structure is well maintained over the
course of a 10 ns simulation whereas more detailed compari-
sons of structural parameters with explicit solvent simulations
of the same sequence show surprisingly good agreement (see
Table 2), although we note larger structural fluctuations in the
implicit simulations. This finding is especially remarkable
given difficulties in obtaining stable simulations of nucleic
acids with both implicit [158] and explicit solvent [1,163,
164].
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Fig. 2 Comparison of molecular surface used in continuum solvent (green) and true solvent-accessible surface (red) from explicit solvent
simulations for β-hairpin structure. The molecular surface on the left (a) is based on radii taken from default CHARMM22 force field Len-
nard–Jones parameters [192]. Atomic radii were adjusted as follows for the molecular surface on the right (b): Cα: 2.107/2.4 Å (Gly), backbone
C: 2.239 Å, backbone O: 1.444 Å, backbone N: 2.140 Å, backbone Hα: 1.207 Å, backbone HN: 0.225 Å, alanine Cβ; 2.142 Å, Hβ;1.240 Å,
phenylalanine/tyrosine ring C: 1.8 Å, tryptophane ring C: 2.0 Å, tyrosine/serine/threonine hydroxyl O: 1.83 Å, glutamine/asparigine side chain
O: 1.6 Å, glutamine/asparigine side chain N: 2.04 Å, histidine ring N: 1.92 Å, aspartic acid/glutamic acid side chain O: 1.4 Å, lysine/arginine side
chain N: 2.05 Å. In addition a reduced water probe radius of 1 Å was used

Table 1 Comparison of charging free energies for blocked dipeptides

System Explicit solvent Implicit solvent molecular surface Implicit solvent modified surface

Ala −11.9 −11.5 −12.8
Val −10.4 −9.7 −11.2
Leu −11.4 −11.3 −12.6
Ile −10.8 −9.7 −11.1
Ser −19.7 −19.3 −19.8
Thr −19.0 −17.8 −18.4
Phe −14.6 −12.7 −14.6
Tyr −19.0 −18.7 −19.7
Cys −15.5 −14.8 −16.0
Met −11.2 −10.8 −11.7
Asn −20.8 −19.7 −20.5
Gln −16.7 −14.8 −16.1
Trp −17.9 −16.4 −17.5
Hsd −25.7 −24.3 −24.9
Asp −91.9 −78.6 −91.9
Glu −87.8 −74.9 −88.3
Arg −66.0 −77.5 −70.3
Lys −72.9 −82.1 −77.3

The dipeptide conformations were obtained from M. Nina and are the same as the structures used in a previous study [152]. Explicit solvent
charging free energy results were taken from the same study. Implicit solvent electrostatic solvation energies were calculated from Poisson theory
with the PBEQ module in CHARMM [188,189] both with default CHARMM radii and the standard molecular surface modified as described in
the caption for Fig. 2. A grid spacing of 0.1 Å and an external dielectric constant of 80 were used for the Poisson calculations. All energies are
in kcal/mol

More extensive comparisons between implicit and explicit
solvent energy landscapes have been carried out in peptide
folding studies [128,130,131,165]. Generally, the agreement
between implicit and explicit solvent is quite good, however,
some deficiencies have been pointed out, in particular with

respect to the enhancement of salt bridges in implicit sol-
vent [130]. Such disagreement between implicit and explicit
solvent models may suggest that the dielectric surface re-
quires further modification or that a pure implicit solvent
model is simply insufficient. Many examples have been
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Fig. 3 Cα root mean square deviation in Å as a function of time in ps for
molecular dynamics simulations at 300 K of protein G (blue), ubiqu-
itin (red), and cyclophilin A (green) with implicit solvent. The GBMV
method was used with the modified surface described in the caption of
Fig. 2. Solvent friction was included through Langevin dynamics with
a friction coefficient of 50/ps. A coefficient of γ = 15 cal/mol/Å2 was
used in solvent-accessible surface area based non-polar solvation term
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Fig. 4 Heavy-atom root mean square deviation in Å as a func-
tion of time in ps for molecular dynamics simulation of DNA
d(CGCGAATTCGCG)2 with the CHARMM27 force field for nucleic
acids [191,193]. Terminal base pairs are excluded. RMSD values are
calculated with respect to the NMR structure 1 GIP (blue) and canon-
ical A-DNA (red). Implicit solvent simulations were carried out with
the GBMV method, Langevin dynamics and hydrophobic contribution
as described in Fig. 3, but without modifying the dielectric boundary

documented where solvent molecules interact in a highly
specific manner with biological macromolecules [166–169].
Specific interactions with solvent often rely on the discrete
nature of solvent molecules with dynamic and electric prop-
erties that are very different from bulk solvent. One would
expect that implicit solvent alone is not sufficient in such
cases so that it may be necessary to develop hybrid models
that include a small set of explicit solvent molecules. Some
first steps have been undertaken in this direction [170,171],
but it is clear that many more studies are needed to evalu-
ate these issues in more detail as the agreement with explicit

Table 2 Comparison of DNA helical parameters

Explicit solvent Implicit solvent

Rise 3.4 ± 0.4 Å 3.2 ± 0.6 Å
Inclination 8.7 ± 3.0 11.2 ± 8.8
Roll 5.6 ± 3.0 6.2 ± 7.8
Twist 34.9 ± 2.5 34.3 ± 5.4
x-displacement −0.9 ± 0.4 Å −1.3 ± 1.2 Å
Propeller twist −11.4 ± 5.4 −11.5 ± 8.9
Slide 0.1 ± 0.3 Å −0.7 ± 0.5 Å

Helical parameters were calculated with FREEHEL98 [190] from the
implicit solvent simulation shown in Fig. 4. Averages over the last 9 ns
simulation time and over all base pairs except the termini are compared
with explicit solvent results for the same sequence from previous work
[191]

solvent and, ultimately, experiment is crucial in establishing
the reliability of implicit solvent methods.

Another aspect that has not been addressed in much detail
is how kinetic rates obtained with implicit solvent relate to
kinetics from explicit solvent simulations. By itself, implicit
solvent based on continuum electrostatics does not include
any solvent friction or stochastic collisions with the solvent.
As a consequence, the dynamics with implicit solvent may
be distorted substantially over explicit solvent simulations. In
particular, it is not obvious how to extract meaningful kinetic
rates from such simulations, and it has recently been noted
that the kinetics differ substantially even between different
GB models [172]. Langevin dynamics can be used to restore
the effects of solvent friction and stochastic collisions [173].
It has been reported that kinetic rates correlate linearly with
the friction coefficient up to a factor 10 less than the value
appropriate for water [174], but some practical questions re-
main how to apply Langevin dynamics correctly to simula-
tions of large molecules in implicit solvent [175]. We have
begun to address these questions by examining the kinetics
of conformational transitions in alanine dipeptide that can
be observed in direct molecular dynamics simulation. Fig-
ure 5 shows the energy landscapes projected onto the back-
bone dihedral angles φ and ψ from a 200 ns explicit solvent
simulation and a 0.5µs simulation with implicit solvent and
Langevin dynamics. The sampling is very similar with 51% α
vs. 43% β in explicit solvent and 55% α vs. 37% β in implicit
solvent although some differences in detailed features can be
identified. The rates for crossings between the α and β basins
(see Table 3) are also very similar between the explicit sol-
vent simulation and the Langevin simulation when a friction
coefficient between 10/ps and 50/ps is employed. The rates
become accelerated with smaller friction coefficients but not
in a uniform way as suggested previously [174]. In fact, the
rates change differently for α ↔ β and αL ↔ β transitions.
α ↔ β transitions become more than four times frequent
with f = 5/ps vs. f = 50/ps, while αL ↔ β transitions only
change by a factor of 2. It may be suspected that the simulated
dynamics in large biomolecules is affected in a similar way.
Further studies will be needed to address these questions in
more detail.
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Fig. 5 Conformational sampling of backbone dihedral angles φ and ψ
in alanine dipeptide from explicit solvent (top) and implicit solvent (bot-
tom) molecular dynamics simulations with Langevin dynamics and a
friction coefficient of 50/ps. The explicit solvent simulation was carried
out over 200 ns, the implicit simulation over 500 ns. In both simulations
the CHARMM22 force field with the recent CMAP correction ref.10
was employed

The reduced computational cost compared to explicit sol-
vent methods is the foremost selling point of implicit solvent
methods. While some early GB implementations are certainly
very fast, only requiring a few times the speed of simula-
tions in vacuum, recently proposed GB methods trade speed
for improved accuracy. First implementations of the GBMV
method [141,146] required as much as 20 times the speed
of vacuum simulation [132]. Although the computational
cost can be reduced to about half with careful optimizations

(unpublished results), the question arises whether such expen-
sive GB methods are still competitive compared to the time
required for standard explicit solvent simulations. In order to
test this point we have obtained timing data for 200 steps
of molecular dynamics simulation with both implicit sol-
vent (optimized GBMV) and explicit solvent (optimal rect-
angular box with 10 Å minimum solvent margin, periodic
boundaries, particle mesh Ewald summation, heuristic non-
bonded list update) for a large set of proteins with different
shapes and sizes. The results are shown in Fig. 6. We find
that even the expensive GBMV method is more cost effec-
tive in most cases. For small systems it is clear that the im-
plicit solvent is much faster because of the large difference
in system size with and without explicit solvent. However,
as the size of the biomolecules increases relatively fewer ex-
plicit solvent atoms are needed to generate a solvent box
with a given margin. As a result explicit solvent simulations
for large but compact proteins can become less expensive
than the GBMV implicit solvent method used in this test.
Figure 6 shows that the cost of GBMV simulations exhib-
its near-linear scaling as a function of the number of sol-
ute residues (or atoms) up to 1,500 residues. Actually, the
best fit curve shown suggests O(N × log(N)) scaling with
a small coefficient. Such favorable scaling is a result from
using a cutoff in both the GB equation and when calculating
Born radii according to Eq. (4). While cutoff calculations will
not reproduce electrostatic solvation energies as given from
Poisson theory, relative solvation energies (and consequently
the forces needed for molecular dynamics simulations) con-
verge with large enough cutoff distances (16–20 Å) (data not
shown). Furthermore, non-bonded list updates are needed
much less frequently without explicit solvent (about every
50–100 steps) and add relatively little extra cost.

The advantage of implicit solvent is greatest for extended
systems, and molecules that have large internal or interstitial
water cavities all of which require a much larger number
of atoms with explicit solvent. Therefore, implicit solvent
is most suited for simulations of protein folding, large-scale
dynamic processes, studies of oligomeric assembly and pro-
tein-protein association, as well as any studies of very large
biomolecular complexes. However, a direct cost-per-time-
step comparison does not take into account that implicit sol-
vent methods offer additional advantages over explicit sol-
vent. Since solvent friction is available as a control parameter
(and could be turned off entirely), it is possible to generate
substantially accelerated dynamics so that relevant thermo-
dynamic states of the biomolecule are sampled much faster
than with explicit solvent. Furthermore, implicit solvent as a
mean-field theory provides equilibrium solvation free energy
estimates without the need for sampling solvent that are par-
ticularly useful as components of physically motivated scor-
ing functions.

4 Implicit modeling of membranes

So far we have focused on modeling biomolecules in aqueous
solvent, approximated with a single continuum dielectric in
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Table 3 Barrier crossing rates in alanine dipeptide

Explicit solvent Implicit Solvent

f = 50/ps f = 10/ps f = 5/ps

α → β 2.53 1.13 3.75 4.84
β → α 2.67 1.69 5.13 6.46
αL → β 2.73 0.82 1.43 1.43
β → αL 0.32 0.02 0.06 0.10

Kinetic rates are compared between explicit solvent and implicit solvent simulations of alanine dipeptide. Transitions between the α, β, and αL
basins are considered. Explicit solvent molecular dynamics simulations were carried out with periodic boundaries and particle-mesh Ewald over
200 ns. The implicit solvent simulations employed the GBMV generalized Born model with Langevin dynamics and were carried out over 0.5µs
simulation time each. The friction constant f was varied as indicated in the table. All rates are in ns−1

the implicit solvent model. While the formalism introduced
above also allows low-dielectric environments, an extension
to heterogeneous environments is less straightforward. While
Poisson theory is equally well suited to describe a set of
charges in any non-uniform spatial distribution of the dielec-
tric function, the GB approximation in its original form is
limited to a single external dielectric. This poses a particular
problem for modeling biological membrane environments,
which can be approximated as a layered dielectric system
from the low-dielectric lipid tail region to the high-dielectric
lipid head groups and water (see Fig. 7b). As a first approx-
imation one can maintain a two-dielectric model by extend-
ing the solute cavity (ε = 1) into the hydrophobic tail region
(see Fig. 7a) [176]. Such a model captures the basic idea
of a hydrophobic slab in a high-dielectric environment and
has been used successfully in a number of test applications
[176–178]. Other, similar models for the implicit modeling
of membranes have also been proposed [97,179].

A more realistic model of biological membranes would
allow weak polarization within the hydrophobic part of the
membrane (ε = 1–2) but also include a region of intermedi-
ate dielectric response (ε=4–8) near the location of the ester
groups [180]. In order to implement such a model within the
GB formalism we have modified Eq. (2) in the following way
[181]:

�Gelec = −1

2

∑ (
1

εp
− 1

εi j

)

× qi q j√
r2

i j +αi (εi )α j (ε j ) exp(−r2
i j/Fαi (αi )α j (ε j ))

(7)

where εi j is calculated as the arithmetic mean of effective
local dielectric constants εi and ε j at two interacting charge
sites i and j . In the case of a membrane bilayer, the local
dielectric constant only depends on z, the direction perpen-
dicular to the membrane layer. The effective value of the
dielectric constant can be obtained from the Born equation
when the electrostatic solvation energy profile of a probe
ion is calculated from Poisson theory for the given set of
dielectric layers. The resulting dielectric profile would de-
pend on the choice of dielectric constants and widths of the
dielectric layers, but it only needs to be calculated once for
a given type of membrane. Interpolated with a spline func-
tion, the fixed dielectric profile is then used throughout the
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Fig. 6 Computational cost from 200 steps of molecular dynamics with
explicit (blue) and implicit solvent (red) for 611 test proteins used and
described previously [132]. In addition timing data for the 1,475 residue
MutS–DNA complex [194,?] was included as well. The implicit solvent
simulations were carried out with a recently optimized GBMV imple-
mentation. An electrostatic cutoff of 16 Å was used. The non-bonded
list was updated heuristically. The integration grid was adjusted to four
angular grid points and an increased density in the radial direction. For
the explicit solvent simulations the proteins were solvated in a rectan-
gular box that would provide at least a 10 Å water layer to the edge of
the box. Particle-mesh Ewald was used to calculate electrostatic inter-
actions. The time in s required for ten steps of molecular dynamics
is shown as a function of the number of residues. All timings were
performed on a 2.8 GHz Intel Xeon CPU

simulation to assign εi as a function of z. With such for-
malism, it is possible to accurately reproduce electrostatic
solvation free energies for macromolecular systems in heter-
ogeneous dielectric environments as compared with solutions
from Poisson theory [181].

In order to arrive at a complete implicit model of a mem-
brane bilayer, the non-polar component of the solvation free
energy plays a crucial role. If only the electrostatic energy is
considered, even a hydrophobic molecular system with small
partial charges would be relatively more favorable in the
high-dielectric environment where the charge–charge inter-
actions are screened more strongly. The non-polar compo-
nent to the solvation free energy takes into account that the
cost of cavity formation nearly vanishes in a non-polar envi-
ronment compared to the substantial cost of reorienting a
polar solvent in order to accommodate the cavity of a bio-
molecule. This difference in non-polar interactions offsets
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Fig. 7 Schematic illustration of a biomolecule in different implicit membrane environments

the reduced screening of charge–charge interactions in the
lipid interior for hydrophobic molecular entitities. We have
used the energetic profile of molecular oxygen insertion into
explicit lipid membranes [182,183] as the starting point for
defining the non-polar component as a linear function of the
solvent-accessible surface area with the prefactor γ a func-
tion of z according to the profile. The profile was then scaled
and shifted so that γ = 0 at the center of the membrane
while reaching γ = 15 cal/mol/Å2 in aqueous solvent, the
same value that we have used in the implicit aqueous solvent
simulations shown above.

A realistic implicit model of membrane bilayers is then
formed by combining the electrostatic and non-polar contri-
butions. Such a model gives reasonable free energy profiles
for the insertion of small amino acid analogs into lipid bi-
layers in agreement with experimental data and explicit lipid
simulations [181], but more exciting is the possibility to carry
out simulations of integral membrane proteins without the
need for either explicit water or lipids. Figure 8 shows the
root mean square deviation from experiment in a simulation
of the bacteriorhodopsin trimer with the newly developed
implicit membrane model. The results are very similar to
explicit lipid/water simulations of the same system [184,185]
suggesting that an implicit model can be used successfully
for the simulation of such complex environments.

5 Summary and outlook

In this paper we have described new methods for the real-
istic modeling of biomolecules in implicit solvent. In par-
ticular, recent GB methods appear to be very effective in
capturing the essential effects of the environment through a
continuum dielectric treatment. While implicit solvent simu-
lations of proteins and peptides in aqueous solvent have been
described before, we are demonstrating here that implicit sol-
vent treatments can also be extended successfully to more
challenging systems such as nucleic acids and integral mem-
brane proteins. These developments are exciting as they ulti-
mately pave the road for the simulation of much more com-
plex molecular systems in full atomic detail that are otherwise
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Fig. 8 Cα root mean square deviation in Å as a function of time in ps for
molecular dynamics simulation of the bacteriorhodopsin trimer includ-
ing three retinal copies with respect to the experimental structure. The
CHARMM22 force field [192] was used for the protein, retinal parame-
ters were obtained from Jan Saam and Klaus Schulten. Implicit solvent
simulations were carried out with a new implicit membrane model based
on the GBMV method [181]. The RMSD value for the entire system is
shown in red, individual RMSD values for the monomers are shown in
blue, green, and cyan

considered inaccessible to conventional explicit solvent sim-
ulations.

Current work is now aimed at more extensive compari-
sons with explicit solvent and ultimately experimental data
in order to show more clearly the strengths and limits of con-
tinuum dielectric models. In parallel, we are working on new
hybrid methods that allow the incorporation of selected, fully
mobile solvent molecules so that specific interactions with
the environment can be considered when needed. A related
direction is the incorporation of ionic effects. A scheme for
the incorporation of bulk salt concentrations through an addi-
tional screening term has been proposed previously [186]. It
is not clear, however, to what extent such a term is sufficient
for including the additional screening due to salt in a realistic
manner.

Another aspect that needs to be understood better is the
modeling of kinetic rates with implicit solvent. While implicit
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solvent offers the opportunity to accelerate conformational
sampling through reduced friction, it is unclear how to inter-
pret such dynamics. This issue becomes even more difficult
in the context of heterogeneous environments where friction
rates may vary spatially. While we think that all of these
issues can be addressed in the near future, we hope to arrive
at a robust method that offers the same level of realism as
explicit solvent simulation but includes only as many explicit
solvent molecules as needed, while treating the environment
in a continuous fashion otherwise.

The primary motivation for using implicit solvent is of
course the promise that a reduced number of particles trans-
lates into reduced computational cost and therefore allows the
simulation of longer timescales and larger systems. We have
tested whether this is in fact the case by comparing a recently
optimized version of the GBMV method with conventional
explicit solvent simulations. Somewhat surprisingly, we did
not find as much of an advantage for the implicit solvent simu-
lations as we would have hoped for, despite nearly linear scal-
ing of the implicit solvent method as a function of the number
of residues. The performance of GBMV, which is arguably
the most accurate GB approximation to Poisson theory at this
time [132,172], can serve as the upper limit for what may be
expected with other GB implementations. A number of alter-
native GB methods are available [86,132], that offer better
performance at a reduced level of agreement with Poisson
theory but would be faster than explicit solvent even for very
large systems. However, while further improvements in the
efficiency of implicit solvent methods may be possible, the
main advantage of implicit solvent methods lies in the fact
that interactions with the solvent are represented as a mean-
field response. Statistical sampling of a given biomolecule in
implicit solvent thereby requires only conformational sam-
pling of the molecule itself, while in explicit solvent sim-
ulations both the solute and solvent need to be sufficiently
sampled in order to obtain meaningful averages. Therefore,
implicit solvent simulations should be able to reach much
longer timescales than with explicit solvent even if the cost
per time step is similar [187]. An understanding of how to
accelerate dynamics in implicit solvent in a controlled man-
ner that allows the recovery of meaningful kinetic rates will
be the key to establishing a highly efficient and realistic sim-
ulation methodology for the study of dynamic processes in
large biomolecular complexes in atomic detail.
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